--!optimize 2 --!native --!strict --My versions type EaseFunction = (n: number) -> number type LinearFunction = (a: number, b: number, t: number) -> number export type RotationMatrix = { Ixx: number, Ixy: number, Iyx: number, Iyy: number, Izx: number, Izy: number } export type Scalar = { Distance: number, Center: Vector2, Rotation: number } export type Math = { Linear: LinearFunction, InOutBack: EaseFunction, OutBounce: EaseFunction, InQuad: EaseFunction, RotationMatrix: (X: number, Y: number, Z: number) -> RotationMatrix, Scalar: (X1: number, Y1: number, X2: number, Y2: number) -> Scalar } local Math = {} :: Math function Math.RotationMatrix(X: number, Y: number, Z: number): RotationMatrix return { Ixx = math.cos(Z)*math.cos(X)-math.sin(Z)*math.sin(X)*math.sin(Y); Ixy = math.cos(Z)*math.sin(X)*math.sin(Y)+math.sin(Z)*math.cos(X); Iyx = -math.cos(Z)*math.sin(X)-math.sin(Z)*math.cos(X)*math.sin(Y); Iyy = math.cos(Z)*math.cos(X)*math.sin(Y)-math.sin(Z)*math.sin(X); Izx = -math.sin(Z)*math.cos(Y); Izy = math.cos(Z)*math.sin(Y) } end function Math.Scalar(X1: number, Y1: number, X2: number, Y2: number): Scalar return { Distance = math.sqrt((X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2)); Center = Vector2.new((X1+X2)/2,(Y1+Y2)/2); Rotation = math.deg(math.atan2(Y1-Y2,X1-X2)) } end --My versions function Math.Linear(a,b,t) return a-a*t+b*t end local c = 2.59491 function Math.InOutBack(n) return n<.5 and 2*n*n*(-c+2*n+2*c*n) or 3*(-1+n)*(-1+n)*(-2-c+2*n+2*c*n) end local n1, d1 = 7.5625, 2.75 function Math.OutBounce(n) return (n<0.363636 and n*n*n1 or n<0.727273 and (.75*(1.*d1-2.*n*n1)) or n<0.909091 and (.9375*(1.*d1-2.4*n*n1)/d1)) or (.984375*(1.*d1-2.66667*n*n1))/d1 end function Math.InQuad(n) return n*n end return Math